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Abstract
We present the theoretical basis of wavefunction engineering. We show that
a Lagrangian formulation for the valence bands of bulk semiconductors in
the k · P model provides a direct approach to determining derivative operator
ordering in the multiband description of electronic states in semiconductors in
the envelope function approximation. The current continuity condition is also
obtained through a gauge variation on the Lagrangian. This naturally leads
into a finite element approach for the discretization of Schrödinger’s equation.
Furthermore, by including the Poisson Lagrangian a self-consistent treatment
of the Schrödinger–Poisson band-bending in arbitrarily doped structures can
be calculated. The theory is developed for both the zinc blende and wurtzite
structured compound semiconductors and their heterostructures. Calculations
for quantum wells and superlattices are presented to illustrate wavefunction
engineering of these structures and the control achieved in obtaining desirable
wavefunction localization. We show that when combined with optimization
methods, wavefunction engineering provides a powerful new methodology for
the optimized design of optoelectronic devices.

Contents

1. Introduction 902
2. A Lagrangian formulation of the valence band structure 903

2.1. The zinc blende semiconductors 904
2.2. The wurtzite semiconductors 906

3. Interface boundary conditions for current continuity 908
4. Examples of wavefunction engineering of quantum heterostructures 909
5. Comparison with other methods 913
6. Concluding remarks 915

0953-8984/06/490901+17$30.00 © 2006 IOP Publishing Ltd Printed in the UK R901

http://dx.doi.org/10.1088/0953-8984/18/49/R01
mailto:lrram@wpi.edu
http://stacks.iop.org/JPhysCM/18/R901


R902 Topical Review

Acknowledgments 915
References 916

1. Introduction

There have been remarkable advances over the past few decades in the development of
optoelectronic devices. In particular, quantum well lasers, emitting with wavelengths from the
near-UV, blue, red, the mid-IR region (2–8 μm), all the way to the far-IR (∼100 μm) region
of the spectrum, have been successfully demonstrated. This spectacular evolution since the
development of GaAs quantum well lasers in the early 1970s has been achieved by means of
technological improvements in the growth of structures. In the following, we are concerned
with the electronic properties of the III–V and II–VI compound semiconductors and their
heterostructures [1].

The geometry of the layered structure, i.e., the layer thicknesses in the multi-quantum
well structure, plays a key role in determining the effective energy bandgap of the
heterostructure, which arises as a manifestation of the Heisenberg uncertainty principle and
carrier localization. This insight was distilled into the concept of ‘bandgap engineering’.
By choosing different materials with suitable energy bandgaps for individual layers, bandgap
engineering has provided a conceptual framework for designing heterostructures with specific
optical properties [2].

Through a combination of computational modelling and advances in the growth of
materials, we can progress considerably further today in exploring the details of the carrier
wavefunctions, how they are shaped by choices for materials in the individual layers, and
the layer geometry. We are essentially tailoring the localization and distribution of the
wavefunctions in the heterostructure, and optimizing optical transition matrix elements, which
fundamentally determine the response and operation of the optoelectronic device. In this article,
we provide a theoretical and computational overview of these advances within the framework
of what we term as wavefunction engineering [3].

We have emphasized earlier [4] that the finite element method (FEM) can be
employed to advantage in simulating the electronic energy band structures of semiconductor
heterostructures. The FEM [3, 5] may be considered to be the discretization of the action
integral, which is fundamental to all of physics through its use in the principle of least action.
We show that the Schrödinger Lagrangian (rather than the Hamiltonian), in conjunction with
the action integral, provides specific advantages in that we can of course obtain the equation of
motion, the Schrödinger equation. We can advance further in this framework by employing a
gauge-variational method to obtain the conserved current and the current continuity boundary
conditions at interfaces [6] in an unambiguous manner, and include perturbations such as
the built-in strain in the heterostructure and externally applied electric and magnetic fields
in a natural manner. Again, the Lagrangian may be used in a discretized action in FEM
calculations to obtain wavefunctions and momentum matrix elements. In the layered structure,
each layer contributes additively to the global action integral. Finally, the effect of charge
redistributions in doped heterostructures due to ionized impurity dopants and free carriers,
leading to energy bandedge bending, can be accounted for using the FEM. This ubiquitous
problem of the Schrödinger–Poisson self-consistency occurs in essentially all active devices,
and the FEM provides a convergent, stable solution in tens of iterations [7] for arbitrary layered
heterostructures with arbitrary doping profiles.

When combined with computational optimization routines the FEM allows us to predict
the material properties and optimized geometry of structures under bias that can have the
desired energy level structure necessary for laser emission at specific wavelengths. In this
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sense, wavefunction engineering has matured to a level where we can predict the optoelectronic
properties of a given heterostructure, and furthermore provide reliable guidelines for the
growth of heterostructures having specific desired outcomes in terms of their optoelectronic
response [8].

This review is organized as follows. In section 2, we describe the k · P model Lagrangian
used to calculate the band structure of heterostructures. In section 3, we show how the
wavefunction and current continuity boundary conditions are derived consistent with operator
ordering. We give examples of wavefunction engineering in section 4. We compare the present
methodology with other band structure modelling in section 5, and provide concluding remarks
in section 6.

2. A Lagrangian formulation of the valence band structure

For our purposes here, in the envelope function approximation (EFA), the general form of
the wavefunction may be considered to be a linear combination of a finite number of band
wavefunctions, indexed by n, of the form

ψ(r) = fn(z)e
ikx xeiky yun(r) ≡ Fn(r) un(r). (1)

A clear perspective on the formulation of the band structure arises on using the principle of least
action in setting up the k ·P model [9]. A number of issues such as derivative operator-ordering
are resolved in a very natural manner, leading to a number of insights into the approximations
that are invoked in the modelling. The action integral that leads to the Schrödinger equation for
the valence bands is given by

A =
∫

dt
∫

V
d3r

(
F∗

n (r)u
∗
n(r)

) [
∂
← h̄2

2m0
∂
→ + (V (r)− E)

]
(Fn(r)un(r))=

∫
dt

∫
d3rL . (2)

The directed derivatives ∂
←

and ∂
→

act on the functions appearing to the left and to the right,
respectively. All the bands are treated within degenerate perturbation theory. In the following,
the integral over time is irrelevant since we are concerned with the time-independent band
structure problem.

Within the spirit of the EFA, we perform ‘cell-averaging’ by integrating over each unit
cell in the crystal. The envelope functions Fn(r) are typically considered to be slowly varying
functions whereas the cell-periodic, and more oscillatory, Bloch functions satisfy Schrödinger’s
equation with band-edge energies. We use the results:∫

cell
d3r u∗

n(r)un′(r) = δnn′ ;
∫

cell
d3r

[
∇u∗

n(r)
h̄2

2m0
∇un′(r)+ u∗

n(r)V (r)un′(r)

]
= Enδnn′,

(3)

and write the momentum matrix element between Bloch states as∫
cell

d3ru∗
n(r)∇un′(r) = i

h̄
pnn′ = −

∫
cell

d3r∇u∗
n(r)un′(r), n 	= n′. (4)

The cell-averaged action integral can then be written in terms of the envelope functions alone,
and we have

〈A〉 =
∫

dt
∫

d3r

(
∇F∗

n

h̄2

2m0
∇Fn′ + ih̄

2m0

{
F∗

n ∂
←

Fn′ pnn′ − pnn′ F∗
n ∂

→
Fn′

}

+ δnn′ F∗
n (En − E)Fn′

)
. (5)
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The integrand in large parentheses in the above equation, the Lagrangian density 〈L〉, may be
cast in a matrix form by separating the band index n into the valence v, and the energetically
higher remote bands with an index r . Following Lowdin’s perturbation theory [10], we
eliminate the remote band wavefunctions in favour of the valence bands of interest by
employing the equations of motion for the remote bands. If we had been developing the
bulk k · P theory, the following terms would correspond to the Kane model [1, 9] for the
band structure, with terms quadratic in the derivatives (O(k2) terms) within the valence bands.
Ignoring spin for the moment, we have

〈L〉vv′ = F∗
v

[
∂
← h̄2

2m0
∂
→ + (Ev − E)δvv′

]
Fv′

+
(

h̄2

m2
0

) ∑
r

F∗
v ∂

←
pvr

1

(E − Er )
prv′∂

→
Fv′ , {v, v′ = X,Y, Z}, (6)

where the p-like valence Bloch states in the III–V and II–VI semiconductors have been denoted
by their symmetry-specified form in terms of X,Y and Z . We have neglected terms of
higher order in perturbation theory and used Lowdin’s approximations. The advantage of the
above derivation is that it explicitly retains the order of the derivative operators, each term
in the Lagrangian is Hermitian, and there is no ambiguity about reordering of operators for
symmetrization. The focus is on the bands in the immediate vicinity of the bandgaps of the III–
V or II–VI materials. We now follow Kane’s discussion for the evaluation of the contributions
of the remote bands to the valence bands. Extensions to include the conduction bands follow
schemes used earlier by explicitly subtracting the contribution of the conduction band states
from the Luttinger γ parameters [11, 12].

2.1. The zinc blende semiconductors

The possible intermediate states contributing to the �15 valence states belong to the
energetically higher conduction bands of symmetry �1 (s-like states), �12 states of symmetry
{2z2 − x2 − y2,

√
3(x2 − y2)}, �15 states of the form {yz, zx, xy}, and the �25 states. These

states are compatible with the atomic s, p, d, and f orbital contributions to the valence electronic
structure of semiconductors, respectively. It has been estimated that the contribution of the
f orbitals to the valence electronic bands in semiconductors is negligible and hence the �25

intermediate states will be ignored. Following the notation of Foreman [13], we define

σ = − (1/3m0)

�1∑
r

|〈X |px |ur 〉|2/(Ev − Er ),

π = − (1/3m0)

�15∑
r

|〈X |py |ur 〉|2/(Ev − Er ),

and

δ = − (1/6m0)

�12∑
r

〈X |px |ur 〉|2/(Ev − Er ). (7)

We then determine the contributions to the individual matrix elements of 〈L〉vv′ . The matrix of
derivative operators that act on the envelope functions {Fvx , Fvy, Fvz} can be shown to be of
the form

〈L〉vv′ =
(

h̄2

2m0

)
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×

⎡
⎢⎢⎢⎢⎣

{
∂
←

x A∂
→

x + ∂
←

y B∂
→

y

+ ∂
←

z B∂
→

z + Ev − E

}
∂
←

x C1∂
→

y − ∂
←

yC2∂
→

x ∂
←

x C1∂
→

z − ∂
←

zC2∂
→

x

∂
←

yC1∂
→

x − ∂
←

x C2∂
→

y

{
∂
←

y A∂
→

y + ∂
←

z B∂
→

z

+ ∂
←

x B∂
→

x + Ev − E

}
∂
←

yC1∂
→

z − ∂
←

zC2∂
→

y

∂
←

zC1∂
→

x − ∂
←

x C2∂
→

z ∂
←

zC1∂
→

y − ∂
←

yC2∂
→

z

{
∂
←

z A∂
→

z + ∂
←

x B∂
→

x

+ ∂
←

y B∂
→

y + Ev − E

}

⎤
⎥⎥⎥⎥⎦,

(8)

in the envelope function basis. Here A = 1 − 6σ − 12δ, B = 1 − 6π,C1 = 6δ − 6σ ,
and C2 = 6π . While in the bulk semiconductor (where the envelope functions are of
the form exp(ik · r)) the ordering of the derivative operators is redundant [9, 14], and
the way in which the band parameters are grouped is irrelevant, it becomes crucial in the
heterostructure. The interface boundary conditions depend on the particular ordering of the
differentiation operators relative to the band parameters that vary across the interface. The
parameters σ, δ and π are simply related to the usual Luttinger parameters [14] and we have
γ1 = −1 + 2σ + 4π + 4δ, γ2 = σ−π + 2 δ, and γ3 = σ+π−δ. The three parameters based
on the symmetry type can be determined from experiments, as are the Luttinger parameters, so
that the implementation of envelope function continuity and the probability current continuity
conditions at interfaces now becomes feasible [15, 16]. The inclusion of the electron spin
and the effects of spin–orbit interaction are straightforward and we obtain a 6 × 6 valence
Lagrangian. The spin–orbit interaction splits the six-fold degeneracy at the zone centre into
a four-fold degenerate heavy-hole (hh) and light-hole (lh) bands of �8 symmetry with total
angular momentum J = 3/2, and a doubly degenerate split-off (so) band of �7 symmetry. The
valence Lagrangian in the |J,m j 〉 basis is given by

Lvv′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P + Q −S− R 0 −1√
2

S−
√

2R

−S̃+ P − Q C− R −√
2Q 	−

R∗ −C+ P − Q −S̃− 	+
√

2Q

0 R∗ S+ P + Q −√
2R∗ − 1√

2
S+

− 1√
2

S̃+ −√
2Q −	̃− −√

2R P +
 C̃−√
2R∗ −	̃+

√
2Q 1√

2
S̃− −C̃+ P +


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

| 3
2 ,

3
2 〉

| 3
2 ,

1
2 〉

| 3
2 ,− 1

2 〉
| 3

2 ,− 3
2 〉

| 1
2 ,

1
2 〉

| 1
2 ,− 1

2 〉

, (9)

where, specializing to the case of the [001] growth direction, we have

P = γ1k2
‖ + ∂

←
zγ1∂

→
z − (Ev − E); Q = γ2k2

‖ − 2∂
←

zγ2∂
→

z,

R = −√
3γ2

(
k2

x − k2
y

) + i2
√

3γ3 kxky; S± = i√
3

[
k±C1∂

→
z + ∂

←
zC2k±

]
,

	± = i

3
√

2

[
∂
←

z(C2 − 2C1) k± + k±(C1 − 2C2)∂
→

z

]
;

C± = −i√
3

[
k±(C1 + C2)∂

→
z + ∂

←
z(C1 + C2)k±

]
.

(10)

Here {γ1, γ2, γ3,C1,C2} are in units of (h̄2/2m0) and k± = kx±iky . The quantities S±,C±,	±
and S̃±, C̃±, 	̃± differ by the exchange of the location of the directed derivatives and k-
components in the expressions. Thus, the Hermiticity of the Lagrangian can be verified
with more care than is usually needed. All the parameters introduced above are expressible
in terms of the three quantities σ, δ, and π , or equivalently, in terms of the Luttinger γ
parameters. In the bulk semiconductor, we have S̃+ = −S+, 	− = √

3/2S−, and C± = 0.
Thus, the operator ordering leads to the breaking up of the usual parameters into component
contributions that appear to contribute differently in layered systems as compared with bulk



R906 Topical Review

semiconductors. Additional perturbations, e.g. the strain energy, are additively included in the
Lagrangian [15, 16].

2.2. The wurtzite semiconductors

We consider the bands in the immediate vicinity of the bandgap of wurtzite materials at the
zone centre. The valence states belong to the {�5v : {X,Y } + �1v : {Z}} representations. The
deeper valence bands belong to the �6v : {X2 − Y 2, 2XY } and the �1v : {Z} representations.
The nearest higher conduction bands belong to the �5c states of {X,Y } symmetry and the �3c

states transform as the {Z} representation. Here we are using the notation of [17], for example.
The second-order valence band terms of (6) are evaluated as done by Kane for bulk

zinc blende semiconductors. We define parameters for the contributions of the higher �1c

conduction bands as follows:

σ1 = 1

m0

∑
�1

〈�
{

X
Y

}

5 |pX,Y |�{S}
1 〉|2/(Ev − E�1);

σ2 = 1

m0

∑
�1

|〈�{Z}
1 |pZ |�{S}

1 〉|2/(Ev − E�1),

and

σ3 = 1

m0

∑
�1

〈�
{

X
Y

}

5 |pX,Y |�{S}
1 〉〈�{S}

1 |pZ |�{Z}
1 〉/(Ev − E�1). (11)

The �3c intermediate conduction states do not contribute to the valence bands. The contribution
of the �5{X Z ,Y Z} intermediate states can be parameterized by writing

δ1 = 1

m0

∑
�5

|〈�
{

X
Y

}

5 |pZ |�
{

X Z
Y Z

}

5 〉|2/(Ev − E�5);

δ2 = 1

m0

∑
�5

|〈�{Z}
1 |pX,Y |�

{
X Z
Y Z

}

5 〉|2/(Ev − E�5),

and

δ3 = 1

m0

∑
�5

〈�{Z}
1 |pX,Y |�

{
X Z
Y Z

}

5 〉〈�
{

X Z
Y Z

}

5 |pZ |�
{

X
Y

}

5 〉/(Ev − E�5). (12)

The �6 states of symmetry {X2 − Y 2, 2XY } require an additional parameter to represent their
contribution. We define

λ = 1

m0

∑
�6

|〈�{X,Y }
5 |p|�

{
X 2 − Y 2

2XY

}

6 〉|2/(Ev − E�6). (13)

The valence band Lagrangian for the wurtzite crystal, in the {X,Y, Z} basis, is now given
by [18, 19]

〈L〉vv′ =

⎡
⎢⎢⎢⎣

{
∂
←

x L1∂
→

x + ∂
←

y M1∂
→

y

+ ∂
←

z M2∂
→

z + (Ev − E)

}
, ∂

←
x Ñ1∂

→
y + ∂

←
y Ñ ′

1∂
→

x , ∂
←

x Ñ2∂
→

z + ∂
←

z Ñ ′
2∂

→
x

∂
←

y Ñ1∂
→

x + ∂
←

x Ñ ′
1∂

→
y ,

{
∂
←

x M1∂
→

x + ∂
←

y L1∂
→

y

+ ∂
←

z M2∂
→

z + (Ev − E)

}
, ∂

←
y Ñ2∂

→
z + ∂

←
z Ñ ′

2∂
→

y

∂
←

z Ñ2∂
→

x + ∂
←

x Ñ ′
2∂

→
z, ∂

←
z Ñ2∂

→
y + ∂

←
y Ñ ′

2∂
→

z ,

{
∂
←

x M3∂
→

x + ∂
←

y M3∂
→

y

+ ∂
←

z L2∂
→

z + (Ev − E)

}

⎤
⎥⎥⎥⎦ ,

(14)
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where the parameters Li , Mi , and Ni are given by

L1 = 1 − 2σ1 − 4λ; L2 = 1 − 2σ2; Ñ1 = −2σ1 + 4λ;
Ñ ′

1 = −4λ; Ñ2 = −2σ3; Ñ ′
2 = −2δ3;

M1 = 1 − 4λ; M2 = 1 − 2δ1; M3 = 1 − 2δ2,

(15)

in units of h̄2/2m0. The order of the derivative operators with Ñ ′
1 and Ñ ′

2 terms is reversed with
respect to Ñ1 and Ñ2 terms. In the bulk semiconductor, the operator ordering is irrelevant and
we obtain the bulk parameters N1 ≡ Ñ1 + Ñ ′

1 and N2 ≡ Ñ2 + Ñ ′
2. Furthermore, as has been

shown by Chuang and Chang [20], the six-fold symmetry under rotation about the c-axis leads
to the relation (L1 − M1) = N1.

The valence band edge is not triply degenerate in wurtzite semiconductors, and the crystal
field splitting leads to the shifts in the band edge energy Ev by 〈X |L(c.f.)|X〉 = 〈Y |L(c.f.)|Y 〉 =

1, and 〈Z |L(c.f.)|Z〉 = 0. The spin–orbit splitting, generated by

Lso = h̄

4m2
0c2

∇V × p ·σ
= L(so)xσx + L(so)yσy + L(so)zσz, (16)

is parameterized by the relations [20]

〈X |L(so)z|Y 〉 = −i
2; 〈Y |L(so)x |Z〉 = 〈Z |L(so)y|X〉 = −i
3. (17)

The spinor matrix elements of the standard Pauli spin matrices σ are readily included in
the above derivation. With these definitions in place, we consider the inclusion of spin in the
Lagrangian. We make the same choice as in [20] for the valence band basis states with spin. The
valence band Lagrangian, including the crystal-field splitting and the spin–orbit interaction, is
given by

Lvv′ =

⎡
⎢⎢⎢⎢⎢⎣

P −K ∗ S̃− 0 0 0
−K Q −S̃+ 0 0 


−S+ S− R 0 
 0
0 0 0 P −K −S̃+
0 0 
 −K ∗ Q S̃−
0 
 0 S− −S+ R

⎤
⎥⎥⎥⎥⎥⎦
, (18)

where, specializing to the case of the [0001] growth direction, and switching the sign of the
energy to be positive for the valence bands, we have

P = (
1 +
2 + Ev − E)+ α; Q = (
1 −
2 + Ev − E)+ α,

R =
[
∂
←

z A1∂
→

z + A2k2
‖
]

+ (Ev − E); K = A5(kx + iky)
2,

S± = i√
2
[∂←z N2k± − k±N ′

2∂
→

z]; S̃± = −i√
2
[∂←z N ′

2k± − k±N2∂
→

z],
α =

[
∂
←

z(A1 + A3)∂
→

z + (A2 + A4)k
2
‖
]
; 
 = √

2
3.

(19)

Here the Bir–Pikus parameters [18] are identified by the relations

A1 = L2; A2 = M3;
A3 = M2 − L2; A4 = (L1 + M1)/2 − M3;
A5 = (Ñ1 + Ñ ′

1)/2; A6 = (Ñ2 + Ñ ′
2)/

√
2.

(20)

The parameter A6 does not appear in the Lagrangian and instead we have to contend with the
determination of two separate parameters (Ñ2 and Ñ ′

2) in order to proceed. This requires that
one of the parameters σ3 or δ3 (see (11) and (12)) be known from ab initio calculations. We
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have tentatively used δ3 = δ1. Mireles and Ulloa [21] have one parameter less in their analysis.
The quantities S± and S̃± differ by the exchange of the location of the directed derivatives and
k-components in the expressions.

The inversion asymmetry terms [22] in the wide-gap wurtzite semiconductors have been
shown to provide an improved description of the valence bands. The valence band parameter
A7 has been expressed in the convenient form A7 = (−ih̄/m0

√
2)〈X |px |Z〉 by Dugdale et al

[23]. A detailed accounting of the various contributions from band mixing and the admixture
of d-orbitals to the inversion asymmetry parameter has been given by Lew Yan Voon et al [17].
In the {XY Z} orbital basis we have

Linv =
⎛
⎝ 0 0 i

√
2A7kx

0 0 i
√

2A7ky

−i
√

2A7kx −i
√

2A7ky 0

⎞
⎠ . (21)

This 3 × 3 valence band matrix is doubled to accommodate the spin degree of freedom and the
resulting 6 × 6 Lagrangian is added to the valence band Lagrangian in (18).

3. Interface boundary conditions for current continuity

The action integral is varied with respect to the envelope functions F∗ and the principle of least
action is invoked to derive the six coupled Schrödinger differential equations in the six-band
zinc blende k·P model. Similar considerations hold for the wurtzite materials. In the following,
we simplify the discussion of the boundary conditions by considering just the valence bands
without including spin, with the Lagrangian given by (8). In a layered heterostructure, each
layer contributes a piece of the action integral. The material properties change across layer
interfaces and we attach a layer index λ to each of the parameters A, B , C1, and C2 appearing
in (8). With the layer growth along the z-axis, the terms in the Lagrangian are separated into
those with different numbers of directed derivatives in z. The action integral takes the form

A =
∫

dt
∑
λ

∫ zλ+1

zλ

dz F∗
i

[
∂
←

zK
(λ)∂

→
z + (∂

←
zQ(λ) + Q(λ)+∂

→
z)+ R(λ) + (E (λ)

i δi j − E)1
]

Fj .

(22)

Here the unit matrix is denoted by 1, and the other matrix coefficients in the Lagrangian are
given by

K(λ) =
[ B(λ) 0 0

0 B(λ) 0
0 0 A(λ)

]
, Q(λ) =

⎡
⎣

0 0 −ikxC (λ)
2

0 0 −ikyC (λ)
2

ikxC (λ)
1 ikyC (λ)

1 0

⎤
⎦ ,

and

R(λ) =
⎡
⎣
(A(λ)k2

x + B(λ)k2
y) (C (λ)

1 − C (λ)
2 )kxky 0

(C (λ)
1 − C (λ)

2 )kxky (B(λ)k2
x + A(λ)k2

y) 0
0 0 B(λ)(k2

x + k2
y)

⎤
⎦ . (23)

Observe that while the individual linear derivative term Q is not Hermitian by itself, the
combination of the two terms involving Q and Q+ together is Hermitian. One of the boundary
conditions at interfaces is the continuity of the envelope wavefunction. The second boundary
condition at the interfaces is the continuity of the probability current across the interfaces,
which we evaluate using a gauge-variational approach that is common in particle physics.
Following Gell-Mann and Levy [6], we substitute Fj (z) → ei(z)Fj (z) in the Lagrangian (22)
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and develop a variation of the Lagrangian with respect to the gauge function (z). In the
presence of operator ordering, the conserved current is obtained in the form

J = 1

h̄

(
δ〈L〉
δ(∂z)

)∣∣∣∣
=0

= i

h̄

[
−F∗

i K(λ)ij ∂z Fj + (∂z F∗
i )K

(λ)
ij Fj − F∗

i Q(λ)
ij Fj + F∗

i Q(λ)+
ij Fj

]
.

(24)

The continuity conditions at an interface at z = 0 are then given by F |0− = F |0+ , and

KF ′ + QF |0− = KF ′ + QF |0+ .

4. Examples of wavefunction engineering of quantum heterostructures

The discretized Schrödinger equation is obtained by the FEM, which may be thought of as
the discretization of the action integral [5]. The physical region is split into small regions,
finite elements, in each layer, and the wavefunctions are expressed in terms of interpolation
polynomials with as-yet unknown coefficients in each finite element. The spatial dependence
is integrated out, and the element matrices are overlaid in a global matrix, for the structure as a
whole, in order to ensure that the continuity conditions discussed in section 3 are implemented.
We minimize the action by varying the unknown coefficients. The resulting discretized
Schrödinger matrix equation is solved by sparse matrix methods. This approach ties in the
action to the numerical work and provides a systematic approach to improving the variational
solution. The contributions of specific layers can be emphasized in FEM by discretizing them
appropriately. We have applied this method to obtain the energy eigenvalues and wavefunctions
in heterostructures, in-plane energy dispersions, and optical matrix elements. The method is
also extended to obtain a self-consistent solution to the Schrödinger–Poisson problem of band
bending [7], a problem of particular interest in the context of spintronics applications where
the carrier concentrations in GaMnAs, for example, can be as high as ∼1020 cm−3 [24]. In the
following, we consider examples of finite element modelling of heterostructures of common
interest. The calculations make use of the band parameters given in [25].

In figure 1, the evolution of the design of a heterostructure for a mid-IR laser is shown. The
initial type-II quantum well structure in figure 1(a) has poor conduction band (�n) and valence
band (�p) wavefunction overlap for optical matrix elements. By introducing another layer in
the well to form a step potential, as in figure 1(b), the wavefunctions are better confined and
show increased overlap. With yet another layer, we obtain the so-called W-structure, shown in
figure 1(c). The W-structure was grown to specifications based on wavefunction engineering,
and the very first structure grown exhibited lasing in the mid-IR region (4 μm) of the spectrum.
This is a classic example of wavefunction engineering [4, 26] through which we are able to
manipulate the material properties of the structure to obtain desired wavefunctions and design
a working laser to operate at expected wavelengths. The W-laser holds the present record for
continuous operation up to 275 K for mid-IR lasers.

In figure 2(a), we show the band bending in a modulation-doped single quantum well,
comparing the bandedge profile before and after the self-consistent calculation, with the rate
of convergence for the Schrödinger–Poisson calculation shown in figure 2(b) [7]. Figure 2(c)
shows the first heavy hole wavefunction before (dotted lines) and after (solid lines) the hole
redistribution. If only the original band offset potential is considered, the wavefunction is of
the simple cosine-like form. When the self-consistent potential is included, the total potential
resembles that of a double quantum well, and the heavy hole wavefunction reflects this by
having two peaks. In more complex situations, the doping profile can be controlled to shape
the wavefunctions differently, a situation that may be termed wavefunction engineering by
modulation doping.
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(a) (b) (c)

Figure 1. (a) The type-II heterostructure of InAs/GaInSb leads to localization of wavefunctions
in different layers. This is ameliorated partially by introducing a step potential as in (b). The W-
structure, shown in (c), provides a substantially improved overlap (figure adapted from [4, 26]; with
permission from Elsevier).

(a) (b) (c)

Figure 2. The valence band bending in a quantum well with p-doped barriers is shown. The
FEM iterations for the Schrödinger–Poisson calculations converge to the self-consistent solution in
a stable manner to the band profile shown in (a), in very few iterations as shown in (b), in the dual-
loop algorithm of [7]. The wavefunctions in the double well created by the self-consistent band
bending are shown in (c) (after [7]).

The ZnSe/Zn1−x MnxSe multilayer system was reported [27] to form a spin superlattice.
For x ∼ 0.04, the conduction bandedge of ZnSe is almost the same as that of the diluted
magnetic semiconductor (DMS) Zn1−x Mnx Se. In an applied magnetic field, the Mn spins
are aligned and the effective conduction bandedge of ZnMnSe for spin-up electrons is higher
than that of ZnSe. It is the opposite for spin-down electrons, so that the spin-up electrons are
localized in the ZnSe layer and spin-down electrons in the ZnMnSe layer. In figure 3(a), we
plot the effective bandedge and the wavefunction for the lowest spin-down electron Landau
level, and in figure 3(b), for the lowest spin-up level, at B = 5 T.

When the Mn alignment is not considered, by neglecting the DMS Lagrangian for the
DMS layer (dotted lines), the probability that the electrons reside in the ZnSe layer is 51.4%
for both spin-up and spin-down electrons due to a small conduction band offset. When the Mn
alignment is taken into account by including the DMS Lagrangian for the ZnMnSe layer, the
probability becomes 42.1% for spin-down electrons and 60.6% for spin-up electrons. Thus the
Mn alignment through an external magnetic field alters the localization of spins in different
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(a) (b)

Figure 3. The conduction bandedge profile without (dotted lines) and with (solid lines) Mn spin
alignment in a magnetic field of 5 T for (a) the spin-down and (b) for the spin-up electron in a
ZnMn/ZnMnSe superlattice is shown. The corresponding wavefunctions are shown in the ‘spin–
superlattice’ formed in the structure.

(a) (b) (c)

200

Figure 4. The magnetization due to Mn spin alignment in a 100 A GaMnAs quantum well is shown.
In (a), the alteration of magnetization with increasing hole concentrations from 5 × 1017 cm−3–
1019 cm−3 is shown. With further increases in hole concentration, (b) and (c), the magnetization
oscillates in orientation across the quantum well. This is due to the occupied energy levels and the
corresponding wavefunctions for holes in the self-consistent potential (after [24]).

layers in specially designed DMS superlattices. This is an example of magnetically tuned
wavefunction engineering.

Figure 4 shows the spontaneous magnetization of Mn ions in a 100 A
Ga0.95Mn0.05As/Al0.35Ga0.65As quantum well as a function of hole concentration, which can
vary independently of the Mn concentration. Since the exchange interaction between Mn ions
and itinerant holes increases with hole concentration, the magnetization increases with hole
concentration, and saturates with a carrier density at about 3 × 1019 cm−3. The shape of the
magnetization is a reflection of the difference between spin-up and spin-down hole densities.
As the hole concentration increases, higher subbands are occupied, and the shape of magne-
tization changes as the relative distribution of spin-up and spin-down holes changes. These
Schrödinger–Poisson–DMS self-consistent calculations were performed in the valence four-
band Luttinger model using the FEM, and illustrate the power of the method in successfully
accounting for such large carrier concentrations [24].

We now consider an example of wavefunction engineering in a 100 A wurtzite GaN/AlGaN
quantum well. When the structure is grown along the c-axis the resulting polarization leads
to a distortion of the quantum well profile due to the large internal piezoelectric polarization
fields. The wavefunctions are then displaced in position and the wavefunction overlap between
electrons and holes is substantially reduced, as shown in figure 5(a). When the growth is
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(a) (b)

Figure 5. The remarkably high internal piezoelectric fields in wurtzite GaN/AlGaN structures
distort the band-edge potential in quantum wells, as shown in (a), leading to a poor overlap of
carrier wavefunctions. When grown along the [112̄0] direction the piezoelectric fields are along the
plane, leading to better characteristics for quantum well lasers. Strain, piezoelectric effects, and
inversion asymmetry effects have been included in the calculations (after [19]. Figure reproduced
with permission from Elsevier).

along the [112̄0] direction, the spontaneous and piezoelectric polarizations are directed in the
plane (still along the c-axis, which is in the plane). The quantum well potential is no longer
distorted by the internal electric field and the wavefunction overlap is then ‘engineered’ to be
large. The calculation of the energy levels and wavefunctions proceeds by employing a rotated
Lagrangian with the new z ′-axis directed towards the corresponding growth direction. The
coordinate transformation x′ = Rx leads to the new rotated Lagrangian given by

L{x′,y′,z′}(k′) = RL{x,y,z}(R−1k′)R−1. (25)

The matrix elements of the transformed Lagrangian in the envelope function basis are
separated, using symbolic algebra software, into terms involving powers of k ′

z = −i∂/∂z′
corresponding to the new growth direction. The rotated Lagrangian is then used in the finite
element calculations [18]. A discussion of the rotation of the k · P Hamiltonian was given
earlier in [11, 28, 29, 21]. This feature of the absence of bandedge profile distortion for the
[112̄0] growth direction in GaN/AlGaN quantum wells has been investigated experimentally
by [30, 31].

As a final example, we consider the design of an intersubband quantum cascade laser
(QCL) structure for emitting in the terahertz (THz) region of the spectrum. Lasers in this
region of the spectrum have special problems to overcome. The electronic transitions for
photon emission are in the energy range 5–20 meV, so that the system has to be cooled to
cryogenic temperatures, and the laser cavity has to be of the order of several hundred microns.
In designing a quantum cascade laser, the goal of the optimization is to have a three-level
system in which the carriers undergo a transition from energy E3 to E2, emitting a photon. The
electrons are then depleted from E2 by a transition from E2 to E1 on emitting interface and
layer-confined longitudinal-optic phonons. The carriers then tunnel into the next period of the
cascade, arriving in the uppermost level 3 of the next stage. Recently, the operation of THz
lasers has been successfully demonstrated [32–34]. Here we are concerned with the optimized
design of a single period of the cascade laser.

In order to design such a structure we consider a single period of a five-quantum well
structure with the requirements that under an externally applied bias of say 2.5 kV cm−1

the energy differences are 16 meV (∼77 μm or ∼3.9 THz) for the photonic transition, and
∼38 meV for the phonon emission. The calculation proceeds by coupling the one-band
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(b)(a)

Figure 6. A five-well structure, representing one period of a QCL with energy level structure for
emitting photons with energy 16 meV (3.9 THz) is shown before layer thickness optimization in (a).
In (b) the structure after GA optimization is shown with well and barrier widths adjusted to obtain
the energy levels under bias that are mentioned in the text.

finite element calculations of the energy levels of the nine-layer period to a Powell or genetic
algorithm (GA) optimizer [35]. In figure 6(a) we show the initial well widths and energy levels
with no bias. Initially, the well and barrier widths are uniformly the same for each well, and the
wavefunctions have been shifted by the eigenvalues for purposes of this display. This may be
compared with the final structure, figure 6(b), obtained through GA optimization for the well
and barrier widths in order to obtain the desired energy level structure in GaAs/Al0.3Ga0.7As.
The wavefunctions have been shifted vertically to have their x-axes coincide with the energy
levels for display purposes. The gain in the QCL structure per period was not optimized with
respect to the rate equations, and this work is as yet preliminary [36, 37] in this regard.

We note that the use of LO-phonon emission for depleting the carriers from E2 to E1 can
also be optimized through the use of interface phonon modes and requiring that (E2 − E1)
lies in the set of interface mode energies. The interface modes extend over the entire structure
and hence provide better overlap with the carriers. In this sense, we are employing phonon
wavefunction engineering in the operation of the QCL [37].

5. Comparison with other methods

We have focused mainly on the k · P model and the use of the envelope function modelling for
the electronic band structure near the centre of the Brillouin zone (BZ). Here we comment on
the other alternatives for evaluating the electronic states in layered heterostructures so as to put
their merits in perspective.

(a) In the empirical tight binding model (ETBM), originally put forward by Slater and
Koster [38], the electronic states are considered to be linear combinations of atomic (s,
p, d, . . .) orbitals. The Hamiltonian’s matrix elements between the atomic orbital states
are not evaluated directly, but are instead introduced as free parameters to be determined
by fitting the band gaps and band curvatures (effective masses) at critical points in the BZ.
Depending on the number of orbitals and nearest neighbours used to represent the states,
the ETBM requires that the overlap integrals be determined in terms of the measured direct
and indirect band gaps and/or effective masses in the bulk material [39]. For example, the
sp3s∗ basis with the second-nearest-neighbour scheme turns out to have 27 parameters
for the zinc blende lattice structure, and the energies and effective masses are obtained
from the diagonalization of the Hamiltonian. It has been emphasized by Lew Yan Voon
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and Ram-Mohan [40] that the bulk band curvatures must be reproduced well in order to
extend the analysis reliably to heterostructures since the effective masses play a crucial
role in determining the energy levels in quantum wells, for example. Thus, reproducing
the bulk bandgaps alone is not sufficient. The bulk energy bands are nonlinear functions
of the ETBM parameters, which can be fitted by trial and error or by using optimization
methods, such as genetic algorithms [41].
The lack of a direct relationship between the input parameters and the experimentally
determined quantities is probably the single greatest disadvantage of the tight-binding
method in making complicated band structure calculations. The strategy for employing the
ETBM for heterostructures is analogous to the FEM in that we overlay atomic coupling
matrices (the sub-Hamiltonians) in order to produce a global matrix for the heterostructure.
The ETBM has been applied to superlattice band structure calculations [42]. A
superperiodicity boundary condition is imposed on the global matrix, and the interface
boundary conditions correspond to interpolated overlap integral parameters. It was
originally thought that the momentum matrix elements for optical transitions require a
refitting of the parameters for these matrix elements as well; however, it was shown by Lew
Yan Voon and Ram-Mohan that one can obtain the optical matrix elements by invoking
the Feynman–Hellmann theorem. We can relate the optical momentum matrix element
to the derivative of the ETBM Hamiltonian with respect to the wavevector so that the
same set of parameters that define the Hamiltonian can be reused in evaluating the optical
matrix elements in a self-consistent manner [40]. The ETBM provides contributions from
the entire BZ to the heterostructure energy levels, whereas the k · P method includes
contributions only near the centre of the BZ. The computational requirements for 2D
and 3D modelling within the ETBM would be more demanding in our opinion than the
envelope function approach with FEM. Inclusion of electric and magnetic field effects are
also much more complex in the ETBM than in the procedure we have reviewed in this
article.

(b) While the inclusion of additional bands and overlaps of higher orbitals is a
possible approach to improving the tight-binding modelling of energy bands in bulk
semiconductors, the effective bond orbital model (EBOM) [43] uses spin-doubled s, px ,
py , pz orbitals to generate an 8 × 8 Hamiltonian. A crucial difference between the EBOM
and related tight-binding formulations is that the s and p orbitals are centred on the face-
centred cubic lattice sites of the zinc blende crystal rather than on both of the two real
atoms per lattice site. The resulting somewhat ad hoc formulation offers considerable
computational savings in comparison with the ETBM. However, the main significance of
the EBOM approach derives from the fact that the resulting secular matrix has a small-
k expansion that exactly reproduces the form of the eight-band k · P Hamiltonian. This
allows the EBOM input parameters to be readily expressed in terms of the experimentally
measured parameters, such as the band gap, the split-off gap, and the zone-centre mass of
each band, which has not been accomplished using the more involved ETBM. In fact, the
EBOM can be thought of as an extension of the k · P method to provide an approximate
representation of the energy bands over the full BZ. Since short-period superlattice bands
sample wavevectors throughout the BZ, we may expect the EBOM to be more accurate
than the k · P model for thin-layer structures. However, the EBOM is considerably less
efficient computationally than the k · P method, especially for thicker superlattices. Each
lattice position must be represented in the supercell technique, i.e., no envelope function
approximation is made.

(c) The influence of core electrons in keeping the valence electrons outside of the core may be
represented by an effective repulsive potential in the core region. When this is added to the
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attractive ionic potential, the net ‘pseudopotential’ nearly cancels at short distances [44].
The valence states are orthogonal to the core states, and the resulting band structure theory
corresponds to the nearly free-electron model. In the empirical pseudopotential model, the
crystal potential is represented by a linear superposition of atomic potentials, which are
modified to obtain good fits to the experimental direct and indirect band gaps and effective
masses. Further details are presented by Cohen and Chelikowsky [45] and in the reviews
by Heine and Cohen [46]. Ab initio approaches employ calculated band parameters (from
the density-functional theory) in lieu of experimental data. Combinations of ab initio and
empirical methods have been developed to a high level of sophistication [47]. Extension
of the pseudopotential method to heterostructures entails the construction of a supercell to
assure the proper periodic boundary conditions. With atomic potentials as the essential
input, the electronic properties of the heterostructure can be determined, although the
required computational effort far exceeds the demands of the k · P method. The relative
merits of the k · P and pseudopotential approaches have been assessed [48]. Again, the
inclusion of states from the entire BZ in the construction of heterostructure quantum states
in these schemes entails heavy computational resources.

6. Concluding remarks

We have shown that the principle of least action can be employed to advantage in the modelling
of semiconductor heterostructures by the FEM. This provides a natural way of including
complex boundary conditions into the simulation. The FEM is not a low-accuracy method,
but rather it can be used to solve quantum mechanical problems with double precision accuracy
at the nanoscale. This modelling approach, implemented by us over the past two decades, now
allows us to explore optoelectronic properties of complex heterostructures through numerical
simulations [4, 49]. The wavefunction overlap, optical matrix elements, strain-induced band
splittings leading to wavefunction mixing, energy level and wavefunction manipulation through
modulation doping, use of magnetic impurity layers to alter distribution of the wavefunctions,
and the application of external perturbations such as electric or magnetic fields are all
increasingly of interest in controlling the actual shape of the wavefunctions. These represent
aspects of wavefunction engineering. The properties of the structure can now be simulated and
optimized on the computer before a heterostructure is actually grown [12, 26]. The fundamental
shift in paradigm represented by wavefunction engineering is leading to the exploration of new
electronic mechanisms and concepts, the exploration of basic physics, and a rapid turn-around
in the design–growth–characterization cycle for developing new optoelectronic devices with
2D (quantum wire) and 3D (quantum dot) confinement of carriers. We are just beginning to
explore the freedom in what may be called heterostructure architecture, in the design of new
optoelectronic devices in three dimensions through this combination of fundamental theory and
FEM computations. Such an approach is indispensable and perhaps inevitable for modelling
nanoscale systems.
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